Solenoid Horn to Produce a Multiband Beam for Neutrino
Oscillation Studies
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A “Conventional” Neutrino Horn

If desire secondary pions with E; < 0.5 GeV (neutrino factories), a high-Z target is

favored, but for E. 2 1 Gev (“conventional” neutrino beams), low Z is preferred.
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A conventional neutrino horn works better
with a point target (high-Z2).

Small horn ID is desirable = challenge to
provide target cooling for high beam
intensity.

Aggressive design: carbon-carbon target
with He gas cooling may be viable at 2 MW:
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A Solenoidal Targetry System for a Superbeam

e A precursor to a Neutrino Factory is a Neutrino Superbeam based on decay of pions

from a multimegawatt proton target station.

e 4 MW proton beams are achieved in both the BNL and FNAL (and CERN) scenarios
via high rep rates: ~ 10°/day.

e (Classic neutrino horns based on high currents in conductors that intercept much of

the secondary pions may have lifetimes of only a few days in this environment.

e Consider instead a solenoid “horn” with conductors at larger radii than the pions of

interest — similar to the Neutrino Factory capture solenoid.

e Pions produced on axis inside the solenoid have zero
(canonical) angular mometum, L, = r(Py 4+ eAy/c) = 0,

= P4 = 0 on exiting the solenoid.

e [f the pion has made exactly 1/2 turn (or an odd number of half turns) on its helix
when it reaches the end of the solenoid, then its initial P, has been rotated into a
pure Py, = P = 0 on exiting the solenoid,
= Point-to-parallel focusing.
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Narrowband Beam via Solenoid Focusing
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e The point-to-parallel focusing occurs for P, = eBd/(2n + 1)wc

e = Narrowbeam neutrino beam with peaks at

I
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e = (Can study several neutrino oscillation peaks at once, at
1.27TM3,[eV?] Likm]  (2n+ )7
E,|GeV] B 2

e Get both v and v at the same time (while v, and 7, suppressed),

= Must use detector that can identify sign of 1 and e,
= Magnetized liquid argon TPC.
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Can Study CP Violation at L/E = (2n + 1)500 km/GeV
[Marciano, hep-ph /0108181, Diwan et al., hep-ph/0303081]

The nth maximum of v5-v3 oscillations occurs at L/E = (2n + 1)400 km/GeV.

The CP asymmetry grows with distance:
Py, — ve) = P(Vy — V) _ 2512C12C938i0 0 (Am%) Am3,L
1FE,

A:

P(v, — v.)+ P, — ) $23513 Amsy

0A 1 E,
= y ~ AVN X VN ~ independent of L at fixed E,,.

Oscillation Nodes for Am?= 0.00252eV

Nevents X 1/L27 [

= Hard to make other measurements at large L. 6 | s %/
f T 9 |3

Low E, favorable for CP violation measurements. s °f § % T %
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If (still) need to disentangle matter effects from CP 8 , | z R &
asymmetries, use the n = 0 and 1 oscillation maxima |
with E; as low as possible, /sz 52
Ex: FNAL-Kenosha (986 km), T T — 2
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LANNDD = A Magnetized Liquid Argon Detector Concept
Still a Good Idea!
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) g Special features
@) Primary e* momentum —> curvatire radius obtained

( : ) 5 by the calorimetric energy measurement
3 ’.

b) In case of initial soft bremsstrahlung y’s, the primary
e* remembers its original direction — long effective x
for bending

¢) With initial hard bremsstrahlung ¥’s — reduced
primary e " energy — low P — small curvature radius
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